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The stochastic simulation algorithm (SSA) is widely used in the discrete stochastic simula-
tion of chemical kinetics. The propensity functions which play a central role in this algo-
rithm have been derived under the point-molecule assumption, i.e., that the total
volume of the molecules is negligible compared to the volume of the container. It has been
shown analytically that for a one-dimensional system and the A + A reaction, when the
point-molecule assumption is relaxed, the propensity function need only be adjusted by
replacing the total volume of the system with the free volume of the system. In this paper
we investigate via numerical simulations the impact of relaxing the point-molecule
assumption in two dimensions. We find that the distribution of times to the first collision
is close to exponential in most cases, so that the formalism of the propensity function is
still applicable. In addition, we find that the area excluded by the molecules in two dimen-
sions is usually higher than their close-packed area, requiring a larger correction to the pro-
pensity function than just the replacement of the total volume by the free volume.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The stochastic simulation algorithm (SSA) [1] is the workhorse algorithm for discrete stochastic simulation of networks of
coupled chemical reactions. The physical system, in this case, is a collection of molecules of various chemical species that
move around inside a fixed volume, and are subject to a set of chemical reactions in which the molecules may be reactants
or products or both. The chemical reactions are all assumed to be ‘‘elementary” in the sense that they occur essentially
instantaneously. Elementary reactions will invariably be either unimolecular or bimolecular; all other types of reactions (tri-
molecular, reversible, etc.) will consist of a series of two or more elementary reactions. If the system is well-stirred, we can
define its state simply by giving the vector x of the molecular populations of the various chemical species. In that circum-
stance, it is usually possible to describe the dynamics of each reaction channel Rj by a ‘‘propensity function” ajðxÞ, defined so
that if the system is in state x, then ajðxÞdt gives the probability that the reaction will occur somewhere inside the system in
the next infinitesimal time interval dt.The magnitude of ajðxÞ thus measures the ‘‘propensity” of reaction Rj to occur in the
immediate future.

The propensity function is very close to, and sometimes numerically equal to, what in deterministic chemical kinetics is
called the ‘‘reaction rate”. But the propensity function does not make the assumption that reactions occur continuously and
deterministically, and its product with dt is mathematically treated as a probability. The outcome of such a set of assump-
tions is the chemical master equation (CME) and the stochastic simulation algorithm (SSA), as discussed in numerous articles
over the past three decades (for an overview of relevant contributions to the development of the chemical master equation
and the stochastic simulation algorithm, see the review article [1] and references therein). In the thermodynamic limit
. All rights reserved.
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(infinite populations and infinite system volume with finite concentrations), the CME and SSA almost always reduce to the
ordinary differential equations of deterministic chemical kinetics.

The SSA generates times s between successive reactions as samples of an exponential distribution whose mean is equal to
the inverse of the sum of the propensity functions. The most commonly used propensity functions are of a mass action form,
according to which the rate of a reaction is proportional to the combinatorial product of the reactants’ populations.

Mass action propensity functions for elementary reactions have been rigorously derived in a well-stirred, dilute hard sphere
setting [2]. In this setting molecules are represented by hard spheres moving ballistically in a vacuum. We refer to them as
point molecules, because, although they must have non-zero diameter l in order to collide, the volume of all the molecules
combined is negligible compared to the volume of their container. If the point-molecule assumption is relaxed, to what extent
does the volume occupied by the reactant molecules themselves affect the rates of the reactions in which they participate?

We will be studying the effect of reactant-excluded volume, in a simple but computationally tractable physical model.
Specifically, we will attempt to answer the following two questions. First, is the time between successive reactions in a
well-stirred, non-point molecule system exponentially distributed, as it must be for the stochastic process theory which
underlies the SSA to hold? Second, if the reaction times are exponentially distributed, what is the mathematical form of
the propensity functions in this setting?

Since bimolecular reactions are always initiated by a collision, the probability of a reaction between two molecules can be
broken down into (a) the probability that the two molecules will collide, times (b) the probability that they will react given
that they have collided. Throughout this work we make the simplifying assumption that (b) is unity, and thus use the terms
collision and reaction probability (and inter-collision and inter-reaction time) interchangeably.

We have previously shown how, for a one-dimensional system, the mass action propensity functions need to be modified
when the volume of the reactant molecules is comparable to the total system volume [3]. We analytically derived the fol-
lowing exact formula for the reaction probability, in the next infinitesimal time dt, of the reaction Aþ A! products in a
one-dimensional system of N non-overlapping hard rods of length l moving ballistically in a volume of length L:
pcol ðdtÞ ¼ NðN � 1Þsrel

2ðL� NlÞ dt: ð1Þ
(In the limit of l! 0 this is equal to the usual dilute gas reaction rate law.) The propensity function for the reaction is, by
definition, this probability divided by dt. In Eq. (1), srel is the mean relative speed of two randomly chosen rods. The correct-
ness of this formula was then confirmed through an extensive series of exact hard rod molecular dynamics simulations.

An analogous treatment of the two-dimensional hard disk system has proved to be challenging. The difficulty arises when
trying to find an analytical inter-molecular distance distribution function for non-overlapping, non-zero sized hard disks in a
finite area. The one dimensional case, given in [3] is essentially a consequence of the Tonks result [4]. But, to the best of our
knowledge, a two or three-dimensional exact version has not been reported in the literature, and we have not been able to
derive it ourselves.

Thus, in this paper we use the hard spheres molecular dynamics simulation methodology to computationally investigate
the effect of molecule size on the propensity for the Aþ A! products reaction in the two-dimensional version of the system.
We consider a system of N hard disks, each of diameter l, initially distributed uniformly randomly with no overlap inside a
circular container with hard reflective walls and diameter L. The choice of hard instead of periodic boundaries was made
after careful consideration. We believe that hard boundaries bring our simple system closer to being ‘‘realistic”. Periodic
boundaries would introduce the unphysical ‘‘appearance” of molecules from nowhere, as they cross the boundary. Also,
for molecules that have non-zero diameter, periodic boundaries make choices regarding initial random placement and in-
ter-molecular collision detection awkward, if not arbitrary.

The molecules move ballistically, and their initial velocities are drawn from a Maxwell–Boltzmann distribution. These ini-
tial conditions represent a well-stirred system in thermal equilibrium. For this system, we collect statistics for the time s
from the initialization of the system until the first inter-molecular collision. We will not be concerned with the evolution
of the system beyond the first collision, because our goal here is simply to study the form of the propensity functions when
the well-stirred condition, which is assumed by the SSA, holds before each reaction. The question of under what conditions
such a system will return to a well-stirred state is both interesting and important, but we do not address that question in this
paper. We do, however, briefly consider the effect of container shape on our results.

We find that the distribution of inter-collision times s in this system is approximately exponential, but with noticeable
deviations in certain circumstances. We study how the s distribution varies with the parameters l and L, which, for a fixed N,
determine the area density of the system (defined as the ratio of the area of the molecule disks to the total area of the
system).

For small numbers of molecules, it appears that three types of s distribution are present: at intermediate values of the
area density, the distribution is indistinguishable from an exponential; as the system tends to the point-molecule limit
(low area density), long inter-molecular collision times are over-represented; as the area density of the system becomes high,
short inter-molecular collision times are over-represented.

It is known that the choice of container shape affects the degree of ergodicity of the molecules’ trajectories, with some
container shapes encouraging trajectories that sample only small parts of the container’s area. In the low population and
small molecule size limit, we find that the small number of molecules, combined with a choice of non-ergodic container
shape (e.g. circular, as opposed to ‘‘stadium”), gives rise to over-represented long times, while the s distribution for short
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times is just as predicted theoretically. Either increasing the number of molecules, or improving the shape of the boundary,
ameliorates this effect.

As the area density of the system becomes high (i.e. for large l=LÞ, and for low population, we find that the excluded area
inferred from the simulation measurements is larger than what one might expect from taking into account the area of the
molecule disks, or their close-packed area, or even several less dense packings [5]. However, as the number of molecules is
increased, the excluded area approaches the close-packed area, as one might have expected.

These results suggest that excluded area in two and three-dimensional, finite, dense systems has a somewhat predictable
impact for systems with a large number of molecules, but may have greater impact than one might have initially supposed
for systems with low population.

In Section 2 we present the physical system under consideration and the computational algorithms used to simulate its
kinetics. In Section 3 we give a brief derivation of the probability of collision from first principles. In Section 4 we present the
results of our simulations. Section 5 summarizes and attempts to explain our findings.
2. Hard sphere molecular dynamics

2.1. The hard sphere molecular dynamics algorithm

The hard sphere molecular dynamics simulation algorithm is a simple billiard balls simulator. Given randomly uniform
initial positions and random Maxwellian velocities for the molecules, it returns the time to the first inter-molecular collision.

The algorithm, as used for the two-dimensional problem, has the following steps:

1. Initialize N molecules, each a disk of diameter l, with:
a. uniform random non-overlapping positions in a finite container of area A (see placement algorithms in Sections 2.2

and 2.3);
b. velocities distributed according to the Maxwell–Boltzmann distribution.
2. For each molecule, compute the next putative collision time with the boundary of the system (ignoring all the other mol-
ecules in the system).

3. For each pair of molecules, compute the next putative inter-molecular collision time, if it exists.
4. Choose the smallest of all molecule-boundary and inter-molecular collision times, and advance the time by that amount.
5. If the collision was:

a. inter-molecular, then report the time and exit;
b. between a molecule and the boundary, then reflect the colliding molecule according to a specular reflection formula;

advance the positions of the remaining molecules, and go back to step 2.
The velocities of the molecules are Maxwell–Boltzmann distributed, meaning that each Cartesian component of the veloc-
ity vector is a statistically independent normal random variable with mean 0 and temperature-determined variance r2.

Statistics for the distribution of times s to the first collision are obtained by running an ensemble of 100,000 realizations
of the hard spheres molecular dynamics algorithm (for a given N, l, and L), each with different random seeds.

2.2. Generating exact initial positions

For the one-dimensional problem it was possible to derive a rejection-free Monte Carlo algorithm for generating samples
of the molecules’ initial positions. An analogous procedure for two dimensions has proven elusive (this problem is equivalent
to finding the analytical formula for the inter-molecular distance distribution function), so a rejection-based Monte Carlo
algorithm was used to generate uniform random non-overlapping positions for the molecules in two dimensions.

The rejection-based initial placement algorithm has the following steps:
For molecule index i ¼ 1; . . . ;N:

1. Generate putative coordinates ðxi; yiÞ for the center of molecule i uniformly and randomly inside the container.
2. Check whether the proposed placement will overlap any of the ði� 1Þ previously placed molecules

a. If an overlap is discovered, discard the entire set of placed molecules (indices 1; . . . ; iÞ. Reset the index to i ¼ 1 and
restart the procedure.

b. If no overlap is discovered, accept the placement, increment the index and go to step 1.
Step (2a) is the only non-obvious step of the placement algorithm: we discard the entire set of already placed molecules,
as opposed to only the very last one, which produced the overlap. The latter procedure will result in a biased distribution, as
can be demonstrated both analytically and by numerical simulation in a one-dimensional setting.

The computational cost of this rejection-based method increases with the total number of molecules, and with the area
density of the system. The simulations we were able to perform using this placement method reached up to area densities of
40% for small values of N (e.g. N ¼ 6Þ.
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2.3. Generating approximate initial positions

One approximate alternative to generating the initial positions of the molecules by the rejection-based Monte Carlo
method is to use a pre-stirring procedure. In this scheme we initialize the positions of the molecules on a regular grid and
then allow the molecules to bounce around until their positions are randomized. The success of such an initialization de-
pends on choosing a good stopping condition. This can be: (a) a time by which an ensemble of positions is guaranteed to
have become well-stirred, (b) a target value for a function (e.g. the radial distribution function), which when reached would
denote a well-stirred state, or (c) noticing that a function (again, possibly the radial distribution function) appears to have
converged, without explicitly having a target value for it. We were unable to locate either (a) or (b) in the literature, and our
experience with checking the radial distribution function for convergence suggested that it was too noisy for systems with
small numbers of molecules.

There is a subtle aspect to choosing the stopping criterion when the system is simulated not by traditional Molecular
Dynamics (i.e. integration of the laws of motion), but by our exact hard sphere algorithm, which steps from collision to col-
lision. If we stop pre-stirring the system immediately after an inter-molecular collision has occurred, the two molecules
which have just collided will be touching. Thus, choosing a stopping criterion that is based on the idea that an exact number
of collisions must occur before stopping will yield ensembles of initial positions which systematically contain two molecules
touching. One must remember to remove such a bias by evolving the system for some time past the last collision, or avoid
introducing such a bias in the first place, by choosing a stopping condition expressed as a duration of time rather than num-
ber of collisions. We do the latter.

In our experiments exploring different amounts of pre-stirring we found that unexpectedly long amounts of pre-stirring
time were necessary for other indicators, e.g. the mean of s, which is the focus of this paper, to reach the values obtained by
the rejection-based method. For a given system (i.e. given N, l, L) we quantify the duration of pre-stirring as FN~ls units of
time, where F is a scaling factor, N is the number of molecules, and ~ls is the expected time to the first collision for this sys-
tem, under the assumption that Ve ¼ Vd ¼ Na (see Section 3). Fig. 1 shows, for a system with N = 9, L = 10, l = 2, how the mean
time to the first collision computed by simulations initialized with pre-stirring (circles) approaches that computed by a sim-
ulation initialized by rejection-based Monte Carlo (solid line with dashed confidence interval), with increasing F.

For a factor F ¼ 300, and the system of Fig. 1 ðN ¼ 9Þ, we see on average 4113 inter-molecular collisions, i.e. each molecule
experiences on average 457 collisions with another molecule. We also see on average 2401 collisions with the boundary, i.e.
on average 267 collisions with the boundary per-molecule. So F is a conservative estimate of the number of inter-molecular
collisions each molecule experiences during the pre-stirring simulation.

While the pre-stirring method of obtaining initial positions makes it possible to work with dense, high population sys-
tems which we would otherwise not have been able to examine, it is nevertheless very time consuming. As can be seen from
Fig. 1, F ¼ 300 is suboptimal in terms of achieving good stirring (if the mean of the s-distribution is used as a convergence
criterion). However it would take 10 times as long to simulate with F ¼ 3000, in order to achieve the dubious improvement
of having the 95% confidence interval of the pre-stirring method overlap that of the rejection-based Monte Carlo. Simulating
ensembles of size 100,000 with a stirring factor of F ¼ 300 already takes days on a workstation, so the results we show in this
paper are based on simulations with F ¼ 300, rather than a higher value.
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Fig. 1. The mean of the s-distribution, as calculated from simulations initialized with rejection-based Monte Carlo, is given by the solid lines. The dashed
lines give the 95% confidence interval in the estimate of the mean. The circles and error bars give the means and 95% confidence intervals of the means of
the s-distribution, as calculated from simulations initialized with pre-stirring with F given by the respective x-coordinates. The system is N = 9, L = 10, l = 2.
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Due to the lack of a rigor of our pre-stirring method, we do not consider it to be on equal footing with the rejection-based
Monte Carlo. Nearly all the results in this paper were obtained using simulations initialized by rejection-based Monte Carlo.
The single exception is Fig. 7, which would have been impossible to obtain by rejection-based Monte Carlo, and which we
therefore consider speculative.

3. Theory for the two-dimensional case

Here we derive an expression for the probability pcolðdtÞ of an inter-molecular collision occurring in the next infinitesimal
time interval dt. This probability is given by the product of: (the number of ways one can choose a random pair of molecules)
times (the probability that a randomly chosen pair of molecules will collide in the next dt). Because of the randomly uniform
spatial distribution, the second factor can be further decomposed into the ratio: (the area one molecule will sweep out rel-
ative to the other molecule in the next dt) over (the total area inside the container accessible to the other molecule).

The initial velocities of the molecules are assumed to follow the equilibrium Maxwell–Boltzmann distribution, i.e. their
Cartesian components are normal random variables with means 0 and variances r2 � kBT=m, where T is the absolute tem-
perature of the system, m is the mass of the molecules and kB is Boltzmann’s constant. The mean relative speed of two ran-
domly chosen molecules in such a distribution can be shown to be
Fig. 2.
time dt
srel ¼ hjv relji ¼
ffiffiffiffi

p
p

r: ð2Þ
Suppose we randomly choose a pair of molecules. We can do this in 1
2 NðN � 1Þ ways. Now we change our frame of reference

so that we are standing on one of the chosen molecules. Then the area swept out by the other molecule in the next infini-
tesimal time increment dt relative to the center of the one we are standing on is (see Fig. 2) 2lsrel dt. To get the probability of
our randomly chosen pair of molecules colliding in the next dt, we must divide this area by the total area available to the
molecules. If we assume that the molecules have no extent ðl ¼ 0Þ, the area A available to the molecules is the total area
of the system. If the shape of the container is circular, and the diameter is L, the area is given by Ac ¼ 1

4 pL2. For a ‘‘stadium”
container (formally known as a Bunimovich stadium [6]), in which semi-circles of diameter L are separated by a square of
side L, the area is As ¼ 1

4 pL2 þ L2.
If we relax the point-molecule assumption (i.e. l > 0), the area available to the molecules will be less than the total area A

of the system by at least the area excluded by the disks of the molecules themselves (Vd ¼ Na ¼ N 1
4 pl2Þ. The question of ex-

actly how large is the excluded area has prompted this research. We will call the excluded area as estimated from the sim-
ulation data the effective excluded area Ve, and we will show in the results section that it is quite a bit larger than Vd.

Finally, combining all of the above, we find that the probability of an inter-molecular collision in the next t is given by
pcol ðdtÞ ¼ NðN � 1Þ
2

2lsrel

A� Ve
dt ð3Þ
with Ve ¼ 0 at the limit l ¼ 0.
If we assume that the same probability pcolðdtÞ holds for each successive infinitesimal time increment dt, from the initial-

ization of the system until the first inter-molecular collision occurs, then the times s will be samples of the exponential dis-
tribution whose mean is the inverse of the coefficient of dt in Eq. (3). If we further assume that every collision results in a
reaction, that coefficient will be the propensity function of the stochastic simulation algorithm and the master equation for
that reaction [1].

4. Simulation results

4.1. Collision time distribution methodology

To fully characterize the distributions of times to the first collision, s, we asked the following questions: what is the
empirical distribution of s at different area densities, and what is the relationship between this empirical distribution and
the analytical exponential in Eq. (3) with the most conservative estimate of excluded volume ðVe ¼ Vd ¼ NaÞ?
To calculate the probability of collision of two randomly chosen molecules of diameter l, moving with relative velocity v rel , in the next infinitesimal
we compute the area that one molecule sweeps relative to the other in that amount of time: 2lsrel dt.
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Upon casual visual inspection, all the distributions certainly appear exponential. To quantitatively test for exponentiality,
we used a common two-sample comparison test, the Kolmogorov–Smirnoff test [7]. To test a s distribution (100,000 values)
for exponentiality, we generated the same number of random samples from an exponential with the same mean as the s
distribution. We then used Matlab’s kstest routine at the default significance level a ¼ 0:05. The routine rejects the null
hypothesis that the samples came from the same distribution (exponential) if the so-called p-value returned by the test
is < 0:05; it fails to reject the null hypothesis that the samples came from the same distribution, if the p-value is >0:05.

4.2. Collision time distribution for N = 6

We began by considering the low molecule count case N ¼ 6, with r ¼ 1 in a circular container of diameter L. Fig. 3 shows
the regions of ðL; lÞ phase space where the distribution of s is or is not statistically indistinguishable from an exponential
according to the K–S test. At intermediate values of area density, for ensembles denoted with ‘+’, the distribution is indistin-
guishable from the exponential. At low and high area density values, for ensembles denoted with ‘o’, the distribution devi-
ates from the exponential.

However, the p-value of the K–S test does not reveal how the empirical s distribution differs from an exponential distri-
bution. To gain some insight into this issue, we note that the standard deviation of an exponential distribution is equal to its
mean. We therefore computed the mean ls and the standard deviation rs of the empirical s distribution, and then examined
the quantity Is � ðrs=lsÞ � 1. If s were exponentially distributed, we would have Is ¼ 0. If Is < 0 the empirical s distribution
would be more peaked around its mean than an exponential distribution would be, and if Is > 0 the empirical s distribution
would be more spread out than an exponential distribution.

The grayscale portion of Fig. 3 gives a plot of Is, again for N ¼ 6 and r ¼ 1, in the (L, l)-plane. The plot shows where the
distribution of s is more spread out or less spread out than an exponential. One possible interpretation of this plot is the
following: a large portion of the distribution of the s sample is exponential, but superimposed on that is a component that
ruins the overall exponentiality. In areas with Is < 0 the values in the added component are close to the mean, i.e. small. In
areas with Is > 0 the values in the added component are larger than the mean. The latter component, in fact, contains some
very large outliers.

This can be seen by comparing the hypothesized analytical exponential, whose mean is given by the inverse of the coef-
ficient of dt in Eq. (3), to the histogram of the s data. An instance of a system for which Is > 0 is the ‘‘small” molecule case
r ¼ 1;N ¼ 6; L ¼ 35; l ¼ 0:1. The mean for the data is �191 and the standard deviation is �204. Fig. 4 breaks down the pdf of
the s distribution into three segments for clarity (note the different scales on the vertical axes). For shorter times (top plot),
the empirical s distribution (solid line) follows our analytical prediction (dashed line) very well. Approximately two standard
deviations to the right of the mean (�600, middle plot), the data becomes heavier than that model prediction, and is better
described by an exponential with the empirical mean (dotted line). Finally, at long times (bottom plot), the data is heavier
than both exponentials. So it appears that, in the Is > 0 regime, the data follows the analytical exponential at shorter s val-
ues, but has heavier than exponential tails for long s values.

To better understand this behavior, we looked at some of the realizations that contributed the outlier s samples, i.e. very
long times. The trajectories of the molecules in those systems were notable for their non-ergodicity; more specifically, there
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would frequently be one or more molecules that moved along the circle boundary (a ‘‘whispering gallery” mode [8]), or that
crossed very close to the center (and therefore bounced back and forth along the diameter). These trajectories are non-ergo-
dic in the sense that the molecules are not sampling the entire container volume. This has the effect of reducing the number
of potential pairings of molecules, which is small to begin with, thereby reducing the probability that some pair will collide.
In this way, the shape of the container boundary combined with the small number of molecules contributes to the increased
number of long-time outliers in the s distribution.

One is also led to suspect the boundary’s role from the observation that the number of boundary collisions preceding each
inter-molecular collision increases dramatically as one approaches the point-molecule limit – something that does not hap-
pen in a one-dimensional system. To test the hypothesis that the boundary contributes to the over-represented long times,
we tried several modifications to the hard circular boundary that we initially studied.

One class of modifications left the shape of the boundary intact, but changed how the molecules were reflected after they
struck it. Since our hypothesis is that specular reflections from the circular boundary tend to orchestrate the molecules’ tra-
jectories in such a way that they do not always sample the entire space, we modified the reflection formulas in several ways,
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in an attempt to increase the randomness in the trajectory of the molecules as they depart the boundary. First, we com-
pletely randomized the departing velocity of the molecule after a collision, while keeping the speed constant. Surprisingly,
this had the effect of further lengthening the mean collision time. We next tried adding a small random angle to the depar-
ture angle after a reflection. This had the effect of very slightly shifting the mean collision time towards the model mean.
Both of these were ways that intuitively seemed to us as though they would increase the ergodicity of the trajectories in
the system; yet, they yielded very inconclusive results.

The other class of modification that we tried retained specular reflection but changed the shape of the boundary to one
which is supposed to discourage non-ergodic trajectories. More specifically, we moved from a circular boundary to a ‘‘Bun-
imovich stadium” [6]. This is simply the interior of a boundary made by joining two semi-circles of diameter L with a square
of side L in between. This boundary shape is supposed to create fewer non-ergodic trajectories than either a square or a circle
boundary alone. Indeed, we observed that it affected the s distribution by moving its mean slightly, but noticeably, closer to
the analytically predicted mean, and also the standard deviation closer to the mean (as it should be for an exponential). For
instance when comparing two 400,000 run ensembles with r ¼ 1, N = 6, l = 0.1, one in a circular container of diameter L = 30,
A = 706.9 and the other in a stadium with L = 19.9, A = 707.0, we found a mean s of 140.9 for the circle and 138.9 for the
Bunimovich stadium, along with a standard deviation of 149.5 for the circle and 145.9 for the stadium. The analytical mean
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Fig. 5. Piecewise histogram of the s distribution for r ¼ 1;N ¼ 6; L ¼ 10; l ¼ 2:8 vs. analytical pdfs of two exponentials. The dotted exponential has the same
mean as the s distribution (�0.1511). The dashed exponential is the most conservative theoretical prediction (with Ve ¼ Vd ¼ Na, where a is the area of one
molecule).
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and standard deviation of s for a volume of this area are 132.9. We confirmed that the effect is general by noticing that the
p-values for the K–S exponentiality test imply that the test is much closer to accepting the distributions as exponential for
Bunimovich stadium volumes than for circular volumes of the same area.

It seems to us that whether a boundary’s shape and reflection characteristics contribute to non-ergodic trajectories is not
a simple yes-or-no question, but rather one of degree. Some boundaries will cause molecules’ trajectories to sample the con-
tainer’s area in a shorter amount of time than others. Our simulations would be most affected by the degree of ergodicity
within a set finite amount of time (the expected time to a collision), not ‘‘eventually”. Thus, we suspect that there is no such
thing as an ‘‘ideal” boundary that would completely eliminate the effects of non-ergodic trajectories. If this is so, then it is not
surprising that the Bunimovich stadium did not completely abolish the long-time tails; instead, it is satisfying that it pro-
duced a measurable change in the expected direction.

At the other extreme of the area density, we see a different picture. An example system for which Is < 0 is given by the
‘‘large” molecule case r ¼ 1;N ¼ 6; L ¼ 10; l ¼ 2:8. The mean for the data is �0.1511 and the standard deviation is �0.1460.
Fig. 5 gives a breakdown of the pdf of the s distribution for those parameters. The most noticeable feature of the pdf is the
complete mismatch between the model exponential curve (dashed line) and the data (solid line). This is due to the fact that
the model exponential (dashed line) is computed using the very conservative estimate that Ve ¼ Na. But we see that the
exponential curve with the empirical mean (dotted curve) follows the data (solid line) rather well. The major deviation in
that regard is that at about two standard deviations to the right of the mean (�0.5), the data slightly undershoots the dotted
exponential curve, which has the effect of biasing the mass of the distribution closer to the mean.

4.3. Collision time distribution for large population

We have shown that in the low molecule population and low area density case the small number of molecules conspires
with the non-ergodic boundary to introduce long-time outliers in the s-distribution. Fig. 6 shows that increasing the number
of molecules while maintaining the low area density abolishes this effect, restoring exponentiality to the distribution.

But is it also the case that the low population but high area density non-exponentiality, which we described in the pre-
vious section, can be abolished by increasing the number of molecules? A definitive answer to this question could be given if
our exact simulation methodology were tractable on dense, high N systems. However, the rejection-based Monte Carlo ini-
tialization of the positions of the molecules takes prohibitively long to complete for such systems. A tentative answer, which
is hopefully a hint in the right direction, can be obtained using the pre-stirring based molecule position initialization routine.
Fig. 7(a) shows that increasing the number of molecules while maintaining a high area density restores exponentiality to the
s-distribution. (We will discuss Fig. 7(b) and (c) in the next section.)

4.4. Excluded volume

Our initial goal in this effort was to investigate the effect of reactant-excluded volume on the kinetics of the
Aþ A! products reaction in our simulation experiments. The most straightforward way to estimate the excluded volume
felt by the molecules in these experiments is to proceed as follows: Assume the distribution of s to be exponential; then
estimate the propensity P as the inverse of the mean ls of the empirical s-distribution; finally, compute the effective excluded
volume by solving the following equation for Ve:
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1
ls
¼ P ¼ NðN � 1Þ

2
2lsrel

A� Ve
: ð4Þ
The effective excluded volume computed this way can then be compared to several ‘‘theoretically plausible” excluded vol-
ume formulas. The simplest such formula takes into account only the area excluded by the molecule discs themselves:
Vd ¼ Na.
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Another possibility would be to consider volumes of the form Vi ¼ Na=/i, where /i is a packing fraction. Some packing
fractions that have been theoretically studied by others are: /cp ¼ p=2

ffiffiffi

3
p
� 0:90, the ‘‘close packing” fraction; /f ¼ 0:69,

the ‘‘freezing” packing fraction; and /c ¼ 0:82, the ‘‘random close” packing fraction [5]. It should be noted that in one dimen-
sion, all three of these packing fractions are equal to 1; therefore, if we were to find that in two dimensions any one of these
fractions is the desired factor, the theory would limit nicely to the lower dimensional result.

Since all the proposed excluded volumes above are of the form V ¼ fNa, with f the inverse of a packing fraction, a reason-
able quantity to visualize is the effective inverse packing fraction, fe ¼ Ve=Na. Higher fe is associated with looser packings, i.e.
higher per-molecule excluded volume. The inverse ‘‘close packing” fraction is fcp � 1=0:90 � 1:1; the inverse ‘‘freezing” pack-
ing fraction is ff � 1:45; and the inverse ‘‘random close” packing fraction is fc � 1:22.

The three parameters of the simulation are N, the number of molecules, L, the diameter of the circular container, and l, the
diameter of the molecules. In each of the plots in Fig. 8, we keep two of these parameters fixed and vary the other. In the left
plots we show Ve (solid line), as estimated from solving Eq. (4), along with Vd ¼ Na for comparison (dashed line). In the right
plots we show fe. Note that fe is the ratio of the solid and dashed lines from the left plots.

The first two left plots (in which we vary N and l) show that the effective excluded volume is higher than just the disk
volume, as expected. But does the effective excluded volume correspond to some packing fraction? The first two plots on
the right address just that question: it seems that no constant packing fraction can account for the effective excluded volume
we observe, across the whole range of area densities and populations. The effective inverse packing fraction, fe, decreases
with increasing area density and with increasing population (see Fig. 7(b) and (c), as well, for a speculative result based
on the pre-stirring initialization of positions).

This implies that the excluded volume situation for finite, reflective boundary containers is not as simple in two dimen-
sions as it is in one dimension. Since the effective excluded volume is a function of the mean ls of the empirical s-distribu-
tion (Eq. (4)), the reason why the packing appears more compact as the number of molecules increases must relate back to
the s-distribution. But we have already shown that in situations with low population, the s-distribution contains artifacts
introduced by the reflective boundary, which ruin its exponentiality, and which obviously impact its mean. So it is reason-
able that in situations where the s-distribution is not exponential, the packing estimated from the empirical is surprising, in
this case for its looseness.

At high population and intermediate density, e.g. N ¼ 20 and area density �12%, at the right end of Fig. 8(b), the packing
reaches fe ¼ 1:8. At high population and high area density (but simulated with pre-stirring), e.g. N ¼ 50 and area density
�42%, at the right end of Fig. 7(c), the packing reaches fe ¼ 1:45, the freezing packing fraction. So, it appears that for densities
at which the excluded area is a significant portion of the area of the system, at high population, the effective excluded area is
reasonably close to close packed.
5. Summary and discussion

We have used computer simulations of hard disk dynamics to study the effect of reactant size on the rates of inter-molec-
ular collisions in the ballistic setting. We have found that the distribution of collision times is close to exponential. It can be
thought of as mostly exponential, except at low population, where we observe an additional mode which depends on the
area density of the system.

At low population and low area density, non-ergodic trajectories contribute to longer than expected inter-molecular col-
lision times. At low population and high area density shorter inter-molecular collision times are over-represented. We con-
clude, on the basis of exact simulations, that increasing the population abolishes the low area density effect; on the basis of
approximate simulations, we speculate that the same is true at high area density.

At intermediate and high area densities, the volume excluded by the reactants ranges from about 2.5 times the area of the
molecules’ disks, at low population or low area density, to near the close-packed area, at high population or high area
density.

In spite of differences in the details of the formula for the effective excluded volume in different population and area den-
sity regimes, it is clear that the probability of collision, and hence the reaction’s propensity function, will be higher in a sys-
tem with large molecules, compared to a system with the same number but smaller molecules.
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